Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling
نویسندگان
چکیده
Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.
منابع مشابه
Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning.
Electrical uncoupling of cardiac myocytes during ischemia is delayed by ischemic preconditioning. This presumably adaptive response may limit development of arrhythmia substrates. To elucidate responsible mechanisms, we studied isolated, perfused rat hearts subjected to a standard preconditioning protocol of 3 cycles of 3 minutes of global no-flow ischemia each followed by 5 minutes of reperfus...
متن کاملConnexin43 and ischemic preconditioning.
Connexin43 (Cx43) is the essential protein to form hemichannels and gap junctions in the myocardium. The phosphorylation status of Cx43 which is regulated by a variety of protein kinases and phosphatases determines hemichannel and/or gap junction conductance and permeability. Gap junctions are involved in cell-cell coupling while hemichannels contribute to cardiomyocyte volume regulation. Cx43-...
متن کاملGap junction-mediated intercellular communication in ischemic preconditioning.
Gap junction-mediated communication can modulate cell death in different tissues. In myocardium, gap junction communication is altered during ischemia, which contributes to the development of arrhythmias, but still allows synchronization of the onset of rigor contracture in the progression of injury. During reperfusion, gap junction communication allows cell-to-cell spread of hypercontracture a...
متن کاملExploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملRegulation of gap junctions by nitric oxide influences the generation of arrhythmias resulting from acute ischemia and reperfusion in vivo
Myocardial ischemia resulting from sudden occlusion of a coronary artery is one of the major causes in the appearance of severe, often life-threatening ventricular arrhythmias. Although the underlying mechanisms of these acute arrhythmias are many and varied, there is no doubt that uncoupling of gap junctions (GJs) play an important role especially in arrhythmias that are generated during phase...
متن کامل